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Existing multidimensional recurrent algorithms for the normalization of Hamiltonian systems are replaced by a one-dimensional
algorithm, that is, the whole procedure of computing the normal form is reduced to a single recurrent formula. This simplification
is achieved by using the ring of asymptotic approximations of fixed order rather than Taylor series in powers of a formal parameter.
© 1997 Elsevier Science Ltd. All rights reserved.

The reduction of systems of ordinary differential equations to Poincaré normal form in the neigh-
bourhood of a singular point is simplified if the equations are in Hamiltonian form, since one can then
apply the necessary transformation to the Hamiltonian rather than to the system itself. The definition
of the normal form of a Hamiltonian and the first algorithm for reduction to normal form were proposed
by Birkhoff [1]. Subsequently, the algorithm was appreciably improved by changing from the generating
function of the required canonical transformation to a generating Hamiltonian, using Lie series [2, 3].
The next step was the development of closed recurrent algorithms that enabled the analytical compu-
tations for reducing Hamiltonians to normal form to be programmed for computers [4].1

The approach employed below was used previously to simplify algorithms for normalizing differential
systems in Poincaré’s sense and the algorithm of the Krylov—Bogolyubov method [5].

We will consider Hamiltonian systems described by an autonomous analytic Hamiltonian

H(q,p)=Hy(q,p)+ H (q.p) (¢}

where Hy(g, p) is the quadratic part of the Hamiltonian, defining the linear part of the system, and H.(g,
p) is a finite or infinite polynomial with no terms of less than third degree. In the theory of quasi-linear
systems Hy(g, p) is referred to the unperturbed Hamiltonian and H.(g, p) as the perturbation.

When defining the concept of “Birkhoff normal form” and reducing to it, one usually replaces the
original generalized momenta p by complex combinations of them: x = p + ig,y = p —igq. These relations
may be regarded as a canonical change of variables (g, p) — (x, y) with valence 2.

Retaining the old notation for functions in the new variables, we shall assume that the valence has
also been taken into consideration. Thus, we will assume from the start that the Hamiltonian is written
as a function of x and y

H(x,y) = Holx, y) + H,(x, ) 2

It is well known that a suitable change of variables will reduce the quadratic part of the Hamiltonian
of a conservative oscillating system to a simpler form, namely

12 i3
Ho =3 Zha(ai + 1), Ho(xi3)=i Thixn,
. k=1

One can formulate the analogous problem of reducing the perturbed part of the Hamiltonian H.(x,
y) to a simpler form. When that is done the changes of variables solving the problem must satisfy three
conditions: they must be canonical; they must leave the quadratic part of the Hamiltonian, i.e. Hy,
unchanged; and, finally, they must be polynomial functions. The third condition implies that the required
transformations can have no singularities at zero.
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}See also MARKEYEYV A. P. and SOKOLSKII A. G., Some computational algorithms for the normalization of Hamiltonian
systems. Preprint No. 31, Moscow, Inst. Prikladnoi Matematiki, Akad. Nauk SSSR, 1976.
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A Hamiltonian that cannot be simplified by any polynomial transformation is said to be in Birkhoff
normal form (BNF).

The general structure of BNF is easily established. Suppose it is necessary to simplify H,(x, y) by
elimmating a term

Y s,
xn”y] "'yn"

This may be done by a canonical transformation (x, y) — (#, v) with a generating function S(x, v)
containing exactly the same term

S= prk+lu, "...v,f”

(here the part 3,;x,v; of the generating function generates the identical transformation).
Applying the changes of variables

=95 o h Sty mu + h Sl
y=o-=v +hax(x‘v y=v +hau(u'u ...

€)

u=

__s__ __a__ N __a_ I s
=X ths (xv )‘”"ay‘” )+

for which we also write the inverse expressions

——— _a_ 1.5 — g — __a_ s
v=y hax(xy ..., x=u hav(u‘u H...

we obtain the following expression for the Hamiltonian (2)

d d
=iy A ih YA +H,
12, il i + 1 2 k(u,‘ a "y -V, avk)uu

The term proportional to A has the same structure as the term that is to be suppressed in all cases,
except when the expression u WVo=ull. . ubv " is a first integral of the system of linear differential
equations generated by the Hamiltonian Ho.

Thus, using polynomial transformations, one can suppress all terms in the non-linear part of H. except
the first integrals of the linear part.

The system with Hamiltonian Hy

!ik =ikkuk, v" =—il‘llk (k =l,--.,’l)

has 21 — 1 independent first integrals G1(u, v), . . . , G2,-1(%, v). The first # of them are polynomial in
form

G/( = Uy (k = 1,...,”) (4)

Among the other first integrals, there are none in polynomial form if the system is non-resonant,
ie.

kihj+...+kh, 20 (ki +...+k7 #0) )
for any integers &y, . . . , k.
But if there are resonances, the number of independent polynomial first integrals is greater than n
by the number of resonance relations of type (5).

For example, if there is a resonance A; = 3A,;, the polynomial integral added to (4) will be G,; = uyv7. In this
example the BNF may depend only on the arguments uyv;, . . ., UV, U3,
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. Definition. A Hamniiltonian has BNF when it depends only on polynomial first integrals (of invariants)
of the unperturbed part, i.e. H = Hy + H, has BNF if {Hy, H.} = 0, (where {H,, H.} is the Poisson bracket).
The algorithm described for the reduction of a Hamiltonian to BNF may be replaced by a much
simpler one if the required canonical transformations are expressed not in terms of the generating
function (3) but in terms of the Hamiltonian of some auxiliary system, whose phase flow is defined by
the one-parameter group of transformation used to normalize the initial Hamiltonian.
Suppose that the Hamiltonian of this auxiliary system is Q(x, y). That means that the equations

dx/dt = 9Q/dy, dyldt = - 3Q/ox
with initial data x(0) = u, y(0) = v define the required transformations by the formulae

x=x(u, v,1),y=yu, v, 1) (6)

where the latter constitute a solution of this Cauchy initial-value problem.
The transformations (6) and their inverses may be written in terms of the following Lie series [5, 6]

2 . 2
x=u+1{u,Q}+%{{u.Q}.Q}+--., y=v+t{v,Q}+£2—‘{{v,Q},Q}+-.-

12 ) 1'.2
u=x—T{x,Q}+;{{x,Q},Q}+..., v =)"T{)’,Q}+;{{)’,Q},Q}+m

In the case of the direct transformations, the symbols for the arguments x and y in the function Q
are replaced by the symbols 4 and v. The function Q itself is unchanged.
The transformed Hamiltonian is also related to the original one by a Lic series

- 2
H(uv)= H(up)+1{H,0}+ %{{H,Q}, O}+... )

This formula is fundamental for constructing the algorithm for the reduction of Hamiltonians to BNF.

We will formalize the criterion determining the order of the non-linear terms by scaling x — €x,
y. — €&y. Then the Hamiltonian (2), taking the valence of this transformation into consideration, may
be written as

1
H(x,y)=Hy(x,y)+ E—ZH,.(Gx. €y) = Hy(x,y) +€H (x,y,€)

We introduce notation for the asymptotic forms of the Hamiltonian
Hy(x,y) = H + O(e*) ®)

that is, H;, s}s any function that differs from the exact Hamiltonian by terms of higher order of small-
ness than €.
The Hamiltonian of the auxiliary generating system will also be sought in this asymptotic form

Q:=Q + O(eh)

Using series (7), one can find the relation between the asymptotic approximations of the BNF and
those of the initial Hamiltonian and the Hamiltonian of the transformation group. Setting € = 7, we obtain

Hy(uw) = Hy(uv)

Hy(uv) = Hy(u,v )+ t{Hy,Qp} )

- 2
Hz(“,v)=Hz(uau)+T{H|'Q1}+%{{H0»Qo},Qo}

..............................
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k
- T
Hk(u,u ) = Hk(u,v )+ T{Hk—l ’Qk—|}+‘ ..+‘F!;;._(‘H0,Qo},Qo}. . }
; " k times
These relations are derived using the properties of the ring of asymptotic approximations.

In the expression for H;(u, v), let us express the Poisson bracket {H;._;, Qx.1} in an asymptotically
equivalent form

{Hyp_1sQe1} = {Ho, Qe 1} +{Hoy = Ho, Oy} = (Hp, Q1 } + {H_y — Hy Q5 ).

The two forms are indeed equivalent because H,_; — Hy ~ 1.
Taking this representation into consideration, we introduce new notation

Ly =Hy(u, v)

2
Ly = tH, - Ho.Qo)+ = ((Ho,0p). Oo) + Hy(uw ) (10)

kool
L = t(Hyy = Ho. Q-2+ Tl (Hy o Qb Qai)- 1+ Hy ()

" i times

Then the formula for the required kth order asymptotic approximation of the transformed
Hamiltonian may be written as

Hy=t{Hp, Qi) + L, (11)

In this equation, called the homological equation, L, is a known function of 4 and v, since, by (10), in
order to determine it one has to know the lowest-order asymptotic approximations of H and Q, which
have already been found. The functions in (11) that are unknown and must be determined are H;(u,
V) and Qk—l(u: V)-

To solve the homological equation for these functions, we observe that the Poisson bracket {H,,
Or1} is the total derivative with respect to ¢ of the function Qy_;(i, v), evaluated along trajectories
of the system with Hamiltonian Hy, that is, along a family of mappings u — u exp(iAf), v — v exp(—i\)

{Hg, Qi1 } = dQy1/dt.

However, by definition H, consists solely of invariants of the same linear system, and hence it follows
from Egq. (11) that

12 ] ] ~
[ L (ue™ ve™)dt = tHy, =10y + 104, () (12)
0

This formula completes the algorithm for Birkhoff normalization: (a) calculate the function L, (u, v)
and (b) evaluate the integral with respect to time of this function along trajectories of the generating
system.

Then the coefficient of ¢ is the required normal form, while the coefficient of 1, which is independent
of t, is the required asymptotic approximation of the generating Hamiltonian, needed to search for the
next approximation.

The first step of this recurrent scheme is to evaluate the integral of the first asymptotic approximation
of the given Hamiltonian along the trajectories of the generating system

’ o L d
[ Hy (ue™ we™™ )de = tH, — 10, + 10, (1)
0

Example (Du]?ing’s equation) § + q + q° = 0. The Hamiltonian corresponding to this equation, H
= (p? + ¢* + q'12)/2, is reduced by the change of variables x = g — ip,y = q + ip to the form H =
ipy + x + y)*/32]. There are no third-degree terms in the Hamiltonian, and therefore the parameter
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€ that distinguishes terms of different orders from each other may be defined subject to the condition
x = (e}, y = V(e)y’. Hence the Hamiltonian may be written as follows (omitting primes):

H = ilxy + e(x + y)*/32}

First approximation. The transformation x — uée”, y — ve™, € = tyields
' ' ! T . )
[ Hydr =f Hat =ij[uu +—(ue" +ve™" )4]dt =
0 0 0 32
= A, +10, +%(%u4e4u + 20wt — 2y 32t —%u 48-4,':)

oo 3
H, ='(W +—1%u2u,2), Qo =—%(%u4 +2u’y —2uv3—-§v4)

Second approximation. The function L, is

2
L, =t{H, —HO,Q0}+%{{H(),Q0},Q0)+H2
where

. . .
H,-H, =%(u+v)4, (Ho,0p) = (Hy —'H|)=—-§2—(u4 +4u’ +4uv +v*), Hy=H.

Calculations analogous to those carried out in the first approximation give

73 3t 22 17 53 3)
H = + — _—T
2 z(uv 16u v 256 uwv

(only the terms with the factor ¢ are singled out). Since we are limiting ourselves to two approximations,
there is no need to determine Q;, which is needed to seek the third approximation.
To return to the initial scale of measurement of the variables, we only need to set T = 1.

Remarks. 1. To simplify the calculations with the recurrent formula (10), all terms involving the factor T with
m > k should be equated to zero.

2. There is also a definition of BNF based on the use of “action-angle” variables [7] p; = V(2p;) cos @;, g; = V(2p;)
sin @;. A BNF is a polynomial in powers of p and it exists only in non-resonant cases. In the case of resonance the
BfNF is said to be resonant and it now depends not only on the action variable but also on resonant combinations
of angles.

Thgldeﬁnition presented in this study is more convenient, for the following reasons. First, it takes care of both
resonant and non-resonant cases. Second, it appeals not to external criteria, such as the form of the dependence
on p and @, but to notions that determine the fundamental essence of the normal form: the normal form may depend
only on polynomial invariants of the generating system. It is quite unimportant whether the invariants themselves
are associated with “identical” or “non-identical” resonances. Third, the definition of normal form for Hamiltonian
fiystems should be a special case of the definition of normal form for arbitrary systems (Poincaré form). Fourth, a

efinition for invariant notions is preferably given in invariant form. In this investigation this condition is satisfied
not only by the definition but also by the algorithm: when one is evaluating the integral on the left of (12) along
trajectories of a degenerate system, it is immaterial in what variables these trajectories are described, that is,
preliminary reduction of the Hamiltonian Hj to canonical form is not necessary.

REFERENCES

. Birkhoff, G. D., Dynamical Systems. American Mathematical Society, New York, 1927.

. Deprit, A., Canonical transformations depending on a small parameter. Celest. Mech., 1969, 1(1), 12-30.

Hori, G. I, Theory of general perturbations with unspecified canonical variables. Publs. Astronom. Soc. Japan, 1966, 18, 4,
287-296.

. Mersman, W. A,, A new algorithm for the Lie transformation. Celest. Mech., 1970, 3, 1, 81-89.

. Zhuravlev, V. F. and Klimov, D. M., Applied Methods of Oscillation Theory. Nauka, Moscow, 1988.

. Olver, P. )., Applications of Lie Groups to Differential Equations. Springer, Berlin, 1986. ‘

. Amol’d, V. I, Kozlov, V. V. and Neishtadt, A. 1., Advances in Science and Aspects of Classical and Celestial Mechanics. Advances
in Science and Technology. Modern Problems in Mathematics, Vol. 3. Vsesoyuz. Inst. Nanchnoi i Tekhn, Inform., Moscow, 1985.

NownhsE WNe

Translated by D.L.



