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Existing multidimensional recurrent algorithms for the normalization of Hamiltonian systems are replaced by a one-dimemional 
algorithm, that is, the whole procedure of computing the normal form is reduced to a single recurrent formula. This simplification 
is achieved by using the ring of asymptotic approximations of fixed order rather than "lhylor series in powers of a formal parameter. 
© 1997 Elsevier Seiem~ Ltd. All rights reserved. 

The reduction of systems of ordinary differential equations to Poincar6 normal form in the neigh- 
bourhood of a singular point is simplified if the equations are in Hamiltonian form, since one can then 
apply the necessary transformation to the Hamiltonian rather than to the system itself. The definition 
of the normal form of a Hamiltonian and the first algorithm for reduction to normal form were proposed 
by Birkhoff [1]. Subsequently, the algorithm was appreciably improved by changing from the generating 
function of the required canonical transformation to a generating Hamiltonian, using Lie series [2, 3]. 
The next step was the development of dosed recurrent algorithms that enabled the analytical compu- 
tations for reducing Hamiltonians to normal form to be programmed for computers [4].$ 

The approach employed below was used previously to simplify algorithms for normalizing differential 
systems in Poincar6's sense and the algorithm of the Krylov-Bogolyubov method [5]. 

We will consider Hamiltonian systems described by an autonomous analytic Hamiltonian 

H(q, p) = Ho(q, p) + H.(q, p) (1) 

where Ho(q,p) is the quadratic part of the Hamiltonian, defining the linear part of the system, and Ho(q, 
p) is a finite or infinite polynomial with no terms of less than third degree. In the theory of quasi-linear 
systems Ho(q,p) is referred to the unperturbed Hamiltonian and H.(q,p) as the perturbation. 

When defining the concept of "Birkhoff normal form" and reducing to it, one usually replaces the 
original generalized momentap by complex combinations of them: x = p +/q ,y  = p -/q. These relations 
may be regarded as a canonical change of variables (q, p) -~ (x, y) with valence 2/. 

Retaining the old notation for functions in the new variables, we shall assume that the valence has 
also been taken into consideration. Thus, we will assume from the start that the Hamiltonian is written 
as a function ofx andy 

H(x, y) = Ho(x, y) + l-l.(x, y) (2) 

It is well known that a suitable change of variables will reduce the quadratic part of the Hamfltonian 
of a conservative oscillating system to a simpler form, namely 

1 n 2 n 
Ho =-- Y.)~k(qk + P~), Ho(x,y)=i~'kxkYk 

2 k=l k=l 

One can formulate the analogous problem of reducing the perturbed part of the Hamiltonian H.(x, 
y) to a simpler form. When that is done the changes of variables solving the problem must satisfy three 
conditions: they nmst be canonical; they must leave the quadratic part of the Hamiltonian, i.e. H0, 
unchanged; and, finally, they must be polynomial functions. The third condition implies that the required 
transformations can have no singularities at zero. 

tPrild~ Mat  Mekh. Vol. 61, No. 1, pp. 12-17, 1997. 
~See also MARKEY'EV A. P. and SOKOESKII A. G., Some computational algorithms for the normalization of Hamiltonian 

systems. Preprint No. :31, Moscow, Inst. Prikladnoi Matematiki, Akad. Nauk SSSR, 1976. 
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A Hamiltonian that cannot be simplified by any polynomial transformation is said to be in Birkhoff 
normal form (BNF). 

Tlie general structure of BNF is easily established. Suppose it is necessary to simplify H.(x,  y) by 
elimhaating a t e r m  

xll.l In sl sn • . X n Y! . . .y ,  

This may be done by a canonical transformation (x, y) ~ :  (u, v) with a generating function S(x, v) 
containing exactly the same term 

i " "'U n 
k 

(here the part E~kvk of the generating function generates the identical transformation). 
Applying the changes of variables 

aS + h ~ x ( X t v s ) = v  + h~u(utu, )+. ."  Y = ~ x  =v 

as  a - ,  
u='~v  f x +h-~v ( x ~  )= x +h Oy (xtY')+"" 

(3) 

for which we also write the inverse expressions 

v= y - h ~ x ( X t y ' ) +  .... x = u - h ~ ( u ~ ' ) ~ - . . .  

we obtain the following expression for the Hamlltonian (2) 

.( 
i=t i)uk avl } 

The term proportional to h has the same structure as the term that is to be suppressed in all cases, 
except when the expression utv s -- u ~1 • • • Un"t"",'2sl ..  . vS,, n is a first integral of the system of linear differential 
equations generated by the Hamiltonian H0. 

Thus, using polynomial transformations, one can suppress all terms in the non-linear part of/-/, except 
the first integrals of  the linear part. 

The system with Hamiltonian H0 

i~ k = iXku k, 6 k = -i~,~k (k = I ..... n) 

has 2n - 1 independent first integrals Gl(u,  v) . . . . .  G2,,_l(u, v). The  first n of  them are polynomial in 
form 

Gk = ukv~ (k = 1 ..... n) (4) 

Among the other first integrals, there are none in polynomial form if the system is non-resonant, 
i.e. 

k l ~ , l + . . . + k n ~  n ~ 0 ( k ? + . . . + k  2 ~ 0)  (5 )  

for any integers kl, • • •, kn. 
But if there are resonances, the number of  independent polynomial first integrals is greater than n 

by the number of  resonance relations of type (5). 

For example, if there is a resonance •1 = 3X.~ the polynomial integral added to (4) will be Gn-1 = uy2 3. In this 
example the BNF may depend only on the arguments utvl . . . . .  unvn, uy~. 
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Defin/t/on. A Hanfiltonian has BNF when it depends only on polynomial first integrals (of invariants) 
ofthe unpertttrbed part, i.e.H = H0 + H, has BNF if {H0, H,} = 0, (where {H0, H,} is the Poisson bracket). 

The algorithm described for the reduction of a Hamiltonian to BNF may be replaced by a much 
simpler one if the required canonical transformations are expressed not in terms of the generating 
function (3) but in terms of the Hamlltonian of some auxiliary system, whose phase flow is defined by 
the one-parameter group of transformation used to normalize the initial Hamiltonian. 

Suppose that the Hamiltonian of this auxih'ary system is Q(x, y). That means that the equations 

dxldx = 3Q/~y, dyldx = - ~Ql~x 

with initial data x(0) = u, y(0) = v define the required transformations by the formulae 

x = x(u, u, x), y = y(u, u, "c) (6) 

where the latter constitute a solution of this Cauchy initial-value problem. 
The transformations (6) and their inverses may be written in terms of the following Lie series [5, 6] 

~2 " ,~2 
x = u+x{u,Q}+--~.{{u,Q},Q}+ .... y =u +z{u ,Q} +-~.I {{u ,Q},Q}+... 

,[2 ,~2 
u = X -%[x,  Ql+~--[[x,Q|,Q}+" ....  u = y - %{y, Q} + - ~  {{y, Q}, Q}+. .. 

In the case of the direct transformations, the symbols for the arguments x and y in the function Q 
are replaced by the symbols u and v. The function Q itself is unchanged. 

The transformed Hamiltonian is also related to the original one by a Lie series 

,[2 
~'l(u,u ) = H(u,o ) + 'C{H, Q} + ~ {{H, Q}, Q}+... (7) 

This formula is fundamental for constructing the algorithm for the reduction of Hamiltonians to BNF. 
We will formalize the criterion determining the order of the non-linear terms by sealing x ---> ex, 

y ---> ey. Then the Hamiltonian (2), taking the valence of this transformation into consideration, may 
be written as 

I 
H(x ,  y)  = Ho(x,  y)  + ~-f H ,  (f.x, sy ) - Ho(x,  y)  + e H ,  (x, y , e  ) 

We introduce nolhation for the asymptotic forms of the Hamiltonian 

Hgx, y) = H + O(~ k+~) (8) 

that is, Hk is any function that differs from the exact Hamiltonian by terms of higher order of small- 
ness than g'. 

The Hamiltonian of the auxiliary generating system will also be sought in this asymptotic form 

Q, = Q + o (e  k) 

Using series (7), one can find the relation between the asymptotic approximations of the BNF and 
those of the initial Hamiltonian and the Hamiltonian of the transformation group. Setting E = x, we obtain 

~o(U,U )= Ho(u,v ) 

g~ (u,u) -- H~(,,v ) + x{Ho,0.o} 

/~2 (u,u)= Hz(u,u ) + x{Hi, Ql } +-~.t {{Ho, Qo}, Qo} 

(9) 
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,[k 

)= +  {nk_l, + Qo 
k times 

These relations are derived using the properties of the ring of asymptotic approximations. 
In the expression for Hk(u, v), let us express the Poisson bracket {Hk_l, Qk-1} in an asymptotically 

equivalent form 

{Hk-I, Q~-I} = {Ho, Qk-I } + {Hk-! - HO, Qk-I} = {Ho, Qk-I } + {Hk-I - HO, Qk-2 }" 

The two forms are indeed equivalent because H k _  1 - -  n 0 - -  "C. 
Taking this representation into consideration, we introduce new notation 

L I = Ht(u,v) 
,~2 

l a  = "c{Hl - H0,Q0 } + T .  {{H0,Q0 }, Q0} + n 2 ( u , u  ) (10) 

k ,~i 

L k = X{nk_ l - H0,Q~_2} + Y . ' 7 ( { . . . {Hk_ i ,Qk_ i } ,Qk_ i } . . . }+nk (u ,u  ) 
i= 2 l . .'~,~, i umes 

Then the formula for the required kth order asymptotic approximation of the transformed 
Hamiltonian may be written as 

14k = X{Ho, Qk-l} + Lk (11) 

In this equation, called the homological equation, Lk is a known function of u and v, since, by (10), in 
order to determine it one has to know the lowest-order asymptotic approximations of H and Q, which 
have already been found. The functions in (11) that are unknown and must be determined are Hk(U, 
v) and Qk-l(U, v). 

To solve the homological equation for these functions, we observe that the Poisson bracket {H0, 
Qk-1} is the total derivative with respect to t of the function Qk-l(u, v), evaluated along trajectories 
of the system with Hamiltonian H0, that is, along a family of mappings u ---> u exp(iLt), v --> v exp(-/Lt) 

[H0, Qk-i} = dQk_l/dt. 

However, by definition Hk consists solely of invariants of the same linear system, and hence it follows 
from Eq. (11) that 

t 
L k (ue ikt,ve - m ) d t  = tkl k - "CQk_ I + xQ~_I(O (12) 

0 

This formula completes the algorithm for Birkhoff normalization: (a) calculate the function Lk(U , v) 
and (b) evaluate the integral with respect to time of this function along trajectories of the generating 
system. 

Then the coefficient of t is the required normal form, while the coefficient of x, which is independent 
of t, is the required asymptotic approximation of the generating Hamiltonian, needed to search for the 
next approximation. 

The first step of this recurrent scheme is to evaluate the integral of the first asymptotic approximation 
of the given Hamiltonian along the trajectories of the generating system 

t 

S HI ( ueizt , °e-ixt )dt = tblj - XQo + xQo (t) 
0 

, 3 Example (Dulling s equation) 4 + q + q = 0. The Hamiltonian corresponding to this equation, H 
2 2 ":It = (p + q + q /2 ) /2 ,  is reduced by the change of variables x = q - ip, y = q + ip to the form H = 

i[xy + x + y)~/321. There are no third-degree terms in the Hamiltonian, and therefore the parameter 
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E that distinguishes terms of different orders from each other may be defined subject to the condition 
x = ~/(~)x', y = ~/(E)f. Hence the Hamiltonian may be written as follows (omitting primes): 

H = iIxy + e(x + y~4/32] 

First approximation. T h e  transformation x ---> u ~ ,  y ~ ve -it, ~ = x yields 

SHidt=]Hdt=i uu+ (ueit +oe-it) 4 dr= 
0 0 0 t- 

=ft, +xQ°+ X---(lu4e4it+2u3ue2it-2uu3e-2it-lu4e"4it)32,4 

f t l=i(  uu+3xu2u2~'16 " J --0n=-1(132~,4 u 4+2U3V-2UO3-1U4)4 

Second approximation. The function L2 is 

,[2 
L 2 ='t{H I -Ho,Qo}+---~{{Ho,Qo},Qo}+H 2 

where 

HI -Ho = i~-'~'(u+u {H°'Qo}=l (fll -H1)=-~2 (ua +4u3v +4uu3 +u 4)' H2 = H" 

Calculations anaJogous to those carded out in the first approximation give 

ft2 = i( uu + 3~ u2u 2 25617 ,C2u3u 3) 

(only the terms witla the factor t are singled out). Since we are limiting ourselves to two approximations, 
there is no need to determine Q1, which is needed to seek the third approximation. 

To return to the initial scale of measurement of the variables, we only need to set x = 1. 

Remarks. 1. To shz~plify the calculations with the recurrent formula (10), all terms involving the factor x 'n with 
m > k should be equated to zero. ,, 

2. There is also a definition of BNF based on the use of action-angle" variables [7]p t = 4(2pi ) cos q~, qi = ~/(2pi) 
sin tp i. A BNF is a polynomial in powers of p and it exists only in non-resonant cases. In the case of resonance the 
BNF is said to be resonant and it now depends not only on the action variable but also on resonant combinations 
of angles. 

The definition presented in this study is more convenient, for the following reasons. First, it takes care of both 
resonant and non-re.,;onant cases. Second, it appeals not to external criteria, such as the form of the dependence 
on p and ¢p, but to notions that determine the fundamental essence of the normal form: the normal form may depend 
only on polynomial invariants of the generating system. It is quite unimportant whether the invariants themselves 
are associated with "identical" or "non-identical" resonances. Third, the definition of normal form for Hamiltonian 

Stems should be a special case of the definition of normal form for arbitrary systems (Poincar~ form). Fourth, a 
fruition for invariant notions is preferably given in invariant form. In this investigation this condition is satisfied 

not only by the definition but also by the algorithm: when one is evaluating the integral on the left of (12) along 
trajectories of a degenerateleo, system, it is immaterial in what variables these trajectories are described, that is, 
preliminary reduction of the Hamiltonlan H0 to canonical form is not necessary. 
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